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We consider the minimal paths on a hierarchical diamond lattice, where bonds 
are assigned a random weight. Depending on the initial distribution of weights, 
we find all possible asymptotic scaling properties. The different cases found are 
the small-disorder case, the analog of L6vy's distributions with a power-law 
decay at - 0% and finally a limit of large disorder which can be identified as a 
percolation problem. The asymptotic shape of the stable distributions of weights 
of the minimal path are obtained, as well as their scaling properties. As a side 
result, we obtMn the asymptotic form of the distribution of effective percolation 
thresholds for finite-size hierarchical lattices. 

KEY WORDS: Minimal path; directed polymer; hierarchical lattice; percola- 
tion. 

1. I N T R O D U C T I O N  

The minimal path problem in a random geometry is a very general 
problem encountered in many different fields of physics. Some recently 
studied problems single out this concept: namely, the structure of random 
fronts arising in ballistic deposition models or in the frontier of Eden 
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cluster,(1) the conformation of directed polymers at zero temperature, (2~ the 
transport properties of nonlinear systems, (3~ etc. The scaling properties of 
this problem have been solved exactly in two dimensions, for the case of a 
small disorder. (4) Various conjectures have been suggested for higher 
dimensions(2.5 7~; however, the problem is still open in these dimensions. 

Even in the simple case of the two-dimensional Euclidian lattice, all 
studies have dealt with a "small" disorder, assuming that the asymptotic 
properties of the system would not depend on the distribution one starts 
with. We address in this paper the question of the unicity of the "fixed 
point" toward which the system converges in the thermodynamic limit (i.e., 
when the lattice size goes to infinity). 

We carried out our study in a very simple geometry: a hierarchical 
diamond lattice. This type of geometry has already been considered by 
Derrida and Griffiths (8~ and Halpin-Healy. (9~ This structure allows a very 
simple and elegant formulation of the problem. In addition, it shares a lot 
of common features with Euclidian lattices. Although the numerical values 
of the exponents obtained cannot in principle be directly compared, it 
appears that the values of the exponents obtained in this simple geometry 
are extremely close to the values obtained for a Euclidian lattice, as 
demonstrated in ref. 9, and discussed in the present article. 

The paper is organized as follows: A brief presentation of the problem 
is given in Section 2, in terms of the scaling transformation of a distribution 
of local weights, similar to the way the problem is presented by Derrida 
and Griffiths (8) and Halpin-HealyJ 9) In Section 3, we recall briefly some 
basic results relative to the stability of the sum of random variables, which 
corresponds to the simple one-dimensional case (and also the limit of 
infinite dimension). Section 4 gives the stable laws, in a number of steps. 
Section 4.1 contains the definition of our notation of the scaling indices; 
Section 4.2 gives the recursion transformation of the distribution when the 
size is scaled by a factor of two. The stability of the power-law decay of the 
distribution close to plus or minus infinity is discussed respectively in Sec- 
tions 4.3 and 4.4; and finally Section 4.5 gives the asymptotic shape of the 
distribution for small and large arguments in the generic case (termed 
"small-disorder" case). In Section 5, we discuss more specifically the scaling 
properties of the small-disorder case, and propose a relation which relies 
on the validity of a simplification. An unstable fixed point which can be 
identified with a percolation problem is analyzed in Section 6, and some 
numerical simulations are presented in Section 7. Section 8 makes the link 
with related works published recently on the breakdown of universality for 
directed polymers. Section 9 summarizes the main results obtained or 
conjectured in this paper. 
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2. P R E S E N T A T I O N  OF  T H E  P R O B L E M  

The geometry of the hierarchical diamond lattice is shown in Fig. 1. 
The starting structure, say the zeroth generation, is a simple bond. To go 
from one generation to the next, one substitutes each bond by four bonds 
assembled in a diamond shape. The number  of bonds in the structure at the 
nth generation is simply 4 n, and its length is 2". The "dimensionality" of the 
lattice is thus 2. 

In a given lattice, we assign to each bond i a random number xi 
picked according to a distribution fo(x). All paths ~ which cross the 
system are given a weight [I~[LI which is the sum of all numbers x along 
the path: 

lt~ll~-- Y~ x, (1) 

We now consider the path ) which minimizes the above norm over the set 
of all paths. We call ~I(L) the minimal weight per unit length 

[[)ilt mine  ]I~]L1 
~ ( L )  - - -  ( 2 )  

L L 

where L is the length of the lattice. We are interested in the statistical 
distribution of c h in the limit L --* oo. 

Before studying this problem, we would like to make clear its connec- 

(a) 

A 

B' 

Fig. 1. Geometry of the hierarchical diamond lattice. (a) To go from one generation to the 
following, one replaces all bonds by a diamond of four bonds. (b) The lattice at the third 
generation. 

( b )  

B 
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tion with percolation. In order to establish it, we propose to generalize the 
initial formulation. Let us consider the following norm over paths: 

We introduce cG(L ) as previously: 

m i n e  il~'ll a 
O~a(L ) - L1/a (4) 

where the L -  ~/~ factor is included to have ~a independent of L for a Dirac 
distribution of x's. 

In the limit case where a tends to infinity, the norm llPIla has a simple 
expression: it tends toward the maximum of the weight of the bonds in the 
path: 

I]~l] ~ = m a x  ( x , )  (5 )  
i c e  

and thus a ~ (L)  is 

~ o o ( L )  = min (max ( x , ) )  (6 )  
e i c e  

It is easy to relate this last expression to the effective percolation threshold 
of the lattice. (1~ If one thinks of the random numbers xi as heights of 
barriers, then c%~(L) can be interpreted as the smallest height which is 
necessary to overpass in order to get from one end of the lattice to the 
other. If the x's were picked from a uniform distribution between 0 and 1, 
it is thus possible to interpret aoo(L) as an effective percolation threshold. 
If the distribution of x is fo, we may relate aoo(L) to the effective percola- 
tion threshold pc(L)  in the following way: Let Fo be the cumulative 
distribution of x's, dFo/dx = fo. Then we have 

F o ( ~  (L))  = p~(L) (7) 

and thus 

o ~ ( L )  = F o 1(pc(L)) (8) 

In this simple percolation limit, we can easily obtain the asymptotic 
shape of the distribution of effective threshold for finite-size lattices and we 
will show that percolation is a limit fixed point of the minimal path 
problem even for a = 1. 
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The structure of the hierarchical lattice allows us to obtain the expres- 
sion of the distribution f(n+ 1)(x) of weights of minimal path knowing the 
distribution of the previous generation fn(x). It can be obtained from the 
simple steps that are needed to construct a lattice at the (n + 1)th genera- 
tion from lattices at the nth generation: the combination of lattices in series 
and then in parallel. 

Series. The weight y of the minimal path spanning two lattices 
connected in series is simply the sum of the two weights xl and x2 of the 
minimal path in each lattice, 

y = Xl + x2 (9) 

I f fn(x  ) is the distribution of the weights xi, the distribution of y, ~b(y), is 
given by the convolution offn with itself: 

~ = f "  * L = ~ ( f~ )  (10) 

(~(y) = f , ( y - -  x) .L(x)  dx 
O 9 

Parallol. For two lattices connected in parallel, the weight z of the 
minimal path is simply the minimum of the two weights Yl and Y2 of the 
minimal path in each lattice, 

z = min(yl ,  Y2) (11) 

The distribution of z, ~(z), is given by 

0(z) = 2~b(z) ~ q~(y) dy = ~(~b)(z) (12) 

Rescaling. Finally, we want to divide the minimal weight by the 
lattice size; thus we introduce a last transformation: 

~(z) = 2~(2z) = ~(~b)(z) (13) 

We thus obtain the following transformation at each generation: 

f~+l  = ~(~(5~(f~)))  (14) 

In the following, we will investigate the fixed points of this transformation 
and the asymptotic shape of the distribution for large n. However, before 
proceeding, we want to recall some well-known results relative to the one- 
dimensional case. 
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3. O N E - D I M E N S I O N A L  CASE 

In this case, only the 5eSe transformations [Eqs. (10) and (13)] relate 
two consecutive distributions. The "lattice" is simply a straight line of 
length L = 2 n. The path is unique and its weight is the sum of 2 n random 
numbers distributed according to a distribution fo.  The question we 
address becomes for this simple case, what is the evolution of the mean of 
this sum, of its deviations, and finally of the entire distribution when the 
length of the path goes to infinity? The fixed points of this transformation 
are given by the Gaussian and L6vy distributions (e.g., ref. 11). The fixed 
point which has the "largest" basin of attraction is the Gaussian distribu- 
tion. It corresponds to the case where the second moment of the distribu- 
tion fo is finite. In this case, the limit value of ( ~ ( L ) ) = m ( L )  [Eq. (2)3 is 
simply the mean value offo:  

f 
oO 

m ( L )  = (~(L)} = xfo(x)  dx  (15) 
o o  

and the mean deviation of the distribution, a ( L ) =  ( ( ~ 2 } _  (0(}2)1/2, varies 
with L as 

a(L)  ~ aoL-1/2 (16) 

The asymptotic form of the distribution of c~ is a Gaussian. 
However, when the second moment is infinite and the first is finite, 

then Eq. (15) holds, but Eq. (16) is replaced by 

~r(L)~ro LI#'-1 (17) 

This behavior is observed for instance when the initial distribution 
fo (x )  ~ x - ~ ' -  ~ at infinity, for 1 </~ < 2. 

Finally, when neither the first nor the second moment exists, then 
Eq. (15) is replaced by 

m ( L )  ~ ~o L~/~` i (18) 

and Eq. (17) holds for the mean deviation. This case is naturally encoun- 
tered for a distribution which is equivalent to f o ( x ) ~  x - " -  1 at infinity, for 
0 < # < l. In the last two cases, the asymptotic form of the distribution is 
a L6vy distribution. The above picture of the one-dimensional case is a 
crude description that captures the most important points. We refer the 
reader to ref. 11 and references therein for a more rigorous treatment and 
explicit statements of convergence theorems. 
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4. FIXED POINTS 

4.1. Notat ions 

In the case of a small disorder (we will come to a more precise defini- 
tion of this concept in the following), the distribution of the minimal 
weights fn on a hierarchical lattice tends to a Dirac distribution when the 
lattice size tends to infinity. The way f ,  approaches this limit is interesting. 
More precisely, if we translate the distribution and rescale it, we find that 
for large n, fn approaches a well-defined distribution cp(x) which satisfies: 

s  ~SPq~(x)  = aq~(ax + b) (19) 

where ~ and b are two scalars which are characteristic of the problem. 
a can be understood as an eigenvalue, whereas ~o is an eigenfunction. This 
form has been introduced by Derrida and Griffiths. (s) In simple words, 
asymptotically, the transformation, ~ 5  P is the combination of a dilation 
of ratio a and of a translation by b. 

From Eq. (19), it is easy to verify that the integral of q~ is constant (it 
remains equal to one). Computing the first moment m' and the mean 
deviation a' of the transformed distribution as a function of the initial one, 
m and a, we obtain the following relations: 

rn - b 
m t - -  

a 

(20) 

We also obtain the scaling of the difference between the first moment and 
its asymptotic value moo : 

m - m ~  o c L  -1/v (22) 

where the same exponent v applies. 

6 In a Euclidian lattice, it can be shown that two correlation lengths exist, one parallel to the 
direction of the path, and one perpendicular  to it. These two correlation length are charac- 
terized by two exponents,  v i  and vii. In two dimensions,  v .  = 1. On  the hierarchical lattice, 
only one such exponent  can be defined, vii, which we call v from now on. To make the 
connection with the work of refs. 8 and 9, v = 1 / ( c o - i ) .  

O-- O'r~m 
a 

The transformation changes the size of the lattice by a factor of two. 
However, the distribution f ,  changes its width by a factor of a. This 
defines 6 a correlation length exponent 1 / v = l o g ( a ) / l o g ( 2 ) .  Thus we may 
write 

~ o c L  - 1 / v  (21) 
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In the above-mentioned case of the one-dimensional lattice, the small- 
disorder case corresponds to the central limit theorem. In this case, the 
distribution fn approaches a Gaussian, i.e., qffx)oc exp[-x2/(2ff2)] .  In this 
case, the mean is invariant, so that b = 0, and the scale factor a appears in 

the scaling of the variance with the lattice size [Eq. (16)1: a = x/2. 

4.2. Iteration Transformations 

In order to get some insight on the form of the relevant function (p for 
the minimal path problem, we use a steepest descent method. Let us write 
the initial distribution f (x )  in the form f ( x ) =  exp[g(x)]  and assume that 
the distribution g is concave, d2g(x)/dx z <0.  It seems that this property 
is always valid asymptotically, and we assume that it is valid from the 
beginning. The 50 transformation reads: 

~b(y) = f 2 -  e x p [ g ( y -  x ) +  g(x)] dx (23) 

Using the steepest descent method, we can estimate this integral as being 
controlled by the maximum of the argument of the exponential. This is 
achieved at the point x where g'(x) = g ' ( y -  x). Since g is assumed to be 
concave, the maximum is reached for x = y/2. Thus 

O(Y) = exp[2g(y/2 ) ] (24) 

The N transformation [Eq. (12)] can now be performed. Two cases have 
to be distinguished. Let us call Zo the point where ~b reaches its maximum. 
If z ~ Zo, then the integral ~T ~b(y) dy can be considered as being constant 
and equal to 1. Thus, 

O(z) = 2 exp[2g(z/2)] for z ~ Zo (25) 

If z > Zo, then the integral ~y ~b(y) dy is dominated by its lower bound, and 
thus 

O(z) = 2 exp[4g(z/2)] for z > Zo (26) 

Finally the rescaling 5f gives 

~(z)=4exp[2g(z)] for Z~Zo/2 
(27) 

~(z)=4exp[4g(z)] for Z>Zo/2 

We can use now the asymptotic property of Eq. (19), which consists in 
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identifying the resulting ~ distribution with exp[g(ax+b)+log(a)]. We 
can identify the large-x behavior of the fixed point distributions g(x). 

Let us now investigate the stability of various form of behavior of g 
close to + ov or - ~ .  The one-dimensional case suggests that we look at 
a power-law behavior first. 

4.3. Power-Law Decay a t  + 

We will first show that the distribution of weight decays at + ~ faster 
than any power law. Let us consider an initial distribution such that 
foocx -~-1 for x ~  ~ .  We cannot use directly Eq. (23) since g(x) is not 
convex. However, it is easy to show that such a power-law tail is stable 
upon convolution (addition of two lattices in series or 5e transformation). 
However, the ~ transformation will change the exponent # into 

/~' = 2~ (28) 

Thus, after one generation, f(x) behaves as x "' ~ at infinity. Upon  itera- 
tion of the transformation, # will tend to infinity. Therefore, a stable dis- 
tribution will converge to zero at plus infinity faster than any power-law. 
This is to be contrasted with the one-dimensional case, where we have seen 
that the L6vy distributions--i.e., with power-law decay at infinity with 
exponents less than three--are  stable. 

Let us note that formally the case /t = 0 is an unstable fixed point 
of the transformation equation (28). This limit is unphysical, since a 
probability distribution converges faster than x -~ at infinity. We will 
see in a following section that the limit #--* 0 + has a simple physical 
interpretation as a percolation limit. 

4.4. Power-Law Decay a t  - 

Let us now assume that f ( x )oc( -x )  -"-I  for x ~ - ~ .  In such a 
case, we see that the complete 5s transformation preserves the power- 
law decay at infinity. In such a case, the sum of two variables will on 
average be controlled by the value of the smallest variable. Thus we can 
formally change the "rain" operation into a sum. We now have a situation 
similar to the one-dimensional case. At each generation, we take the mini- 
mum (or the sum) of four elements and divide it by two. Thus, the scaling 
of the moments  is trivial. The asymptotic distribution has a power-law tail 
at - ~ and a rapid decay at + ~ .  The second moment  of the distribution 
will scale with the lattice size as 

a(L) ,., 6o  L2/~ 1 (29) 

822/65/1-2-13 
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The difference with Eq. (17) is that the number  of elements considered is 
equal to L 2, but we only rescale the result by a factor L. In order to find 
the largest value of # = # +  which is stable, we will match the result (29) 
with that corresponding to a small-disorder case. Since we will argue below 
that v = 3/2, we obtain 

2/#+ - 1 = -1Iv  (30) 

or 

2v 
= 6  (31) 

# + = v - 1  

The first moment  of the distribution will follow a behavior similar to the 
small-disorder case for less restrictive conditions than p > p+.  Indeed, the 
mean ( e ( L ) )  will scale with L for low values of # as ( ~ ) ~  - L  2/~-l, in 
a regime where the value of c~ will be dominated by that of the smallest 
element in the network. A crossover to a small-disorder regime will take 
place for values of # larger than # + + such that 2/# + + - 1 = 0 or # + + = 2. 

Let us summarize this last result: Three types of regime are found, 
depending on the exponent #. 

(a) # >  #+.  This case is not stable. The distribution will fall in the 
case of a small disorder, which we will analyze in more detail below. 

(b) ~t++ < / ~ < # + .  In this intermediate range, the first moment  is 
proport ional  to the length of the path, but the fluctuations decay more 
slowly than in the small-disorder case. 

(c) /z < #+ +. In this case, the norm of the path is no longer propor-  
tional to the length of the path, but scales with an exponent 2 / # -  1. The 
fluctuations are of the same order of magnitude as the mean. 

To find a physical interpretation of these different regimes, it is more 
natural to change the weights into their opposite, so as to be able to deal 
only with positive numbers. Thus, the minimal path will be changed into 
a maximal path. The problem can still be mapped onto a directed polymer 
problem, but in a medium which attracts the polymer instead of being 
repulsive. In the second regime, the wandering of the polymer is larger than 
in the small-disorder case, at all length scales. The last regime is a case 
where the energy of the polymer is no longer proport ional  to the length of 
the polymer, but increases faster (as in the one-dimensional problem). 

It is hard to find a corresponding Eden model or agregation model 
which could be mapped onto a maximal path instead of a minimal path. 
However, if such a model could be constructed, then the second case, 
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#+ + < # < # +, would be such that the roughness of the interface is larger 
than in the small-disorder case, but it would still be confined to the exter- 
nal skin of the cluster, which would be dense. The last regime, # < #+ +, 
would be such that the roughness of the cluster surface is scaling like the 
size of the cluster (like, e.g., for diffusion-limited aggregation, DLA). Thus, 
the boundary would contain fjords reaching the heart of the cluster. In this 
regime one might also expect that the cluster would then be fractal and no 
longer dense. Clearly such a behavior is reminicent of the dielectric 
breakdown model introduced by Niemeyer et al., (12) where, by varying one 
parameter, it is possible to interpolate between the Eden model (which can 
be shown to be equivalent to the small-disorder case of the minimal path 
problem (2'13)) and more ramified fractal clusters such as DLA clusters. If 
would be of great interest to see whether such a correspondance is only to 
be considered as illustrative or if it hides a deeper link. 

4.5 .  S m a l l  D i s o r d e r  

Let us now consider the small-disorder case where the initial distribu- 
tion decays faster than ( - x )  -"+ 1 [or ( - x )  7] at -oo .  Since in this 
case, the power laws on either plus or minus infinity are not stable, we look 
for asymptotic behaviors in the form of exponentials of power laws. For x 
much larger or much smaller than the maximum off,  we consider a power- 
law behavior for g, g(x)~  - Ix l  "/-+, with 7+ and ? respectively for x large 
and small. This form satisfies the expected condition (19), provided 

k+ [zI 7+ = lazl ~+ (32) 

where k+ = 2  and k_ =4,  as can be read from Eq. (27). Equation (32) is 
simply the rewriting of Eq. (19) up to the dominant terms for large Izl. 
Therefore, we obtain 

log (2) 
?+ log (a) 

log (4) 

? -  log (a) 
2v 

(33) 

The conclusion of this subsection is that in the small-disorder regime, 
the behavior of the distribution f i x )  is f(x)ocexp(lxt  v) for large x, and 
f ( x )  is f (x )oc  exp(lxl 2v) for small x. 

It is useful to compare this result with the similar one relative to the 
sum of random variables (one-dimensional problem). In the latter case, the 
fixed points of the convolution operator are given, in Fourier space, by 
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exponentials of power laws. In the minimal path problem, the major 
difference is that, in real space, the exponent is different according to 
the position with respect to the most probable value. Now, in order to 
conclude, we have to investigate the stability of these laws. 

5. S M A L L  D ISORDER 

In order to find out the value of the exponent ~ +, we will establish 
a correspondence between the original problem in real space and its 
"Laplace" transform. We use here Laplace transform between quotes since 
we use the following transformation on a function f (x ) :  

Lf(s)  = e "Xf(x) dx (34) 
- - o 0  

which is close to the usual Laplace transform, but in which the lower 
bound in the integral is - o v  instead of 0. The usual Laplace transform 
cannot be used here since the functions we will deal with are nonzero from 
- oo to + oo. However, most properties of the Laplace transform hold. For  
simplicity, we will refer to this transformation as a Laplace transform in the 
rest of the paper. The functions to which we will apply this transformation 
are supposed to be of the form established previously, i.e., with an 
exponential of power-law behavior at +oo.  This form ensures that the 
Laplace transform defined above will exist and be defined for all values 
of s. 

The two main operations, 5 ~ and ~ ,  can be simplified using 
appropriate transformations. Since the series transformation is a convolu- 
tion product [see Eq. (10)] in Laplace space, the transform of the distribu- 
tion is simply squared. The parallel transformation, Eq. (12), may be 
rewritten 

0(z) = 2~o(z) f ~p(y)dy = I -1  2 Iq~(z) (35) 
Jz 

where we have used the notation ! for the integral ~y and 2 for the square 
operation. In both cases, we apply a linear transformation--Laplace L or 
integral I - - then  square the result, and apply the reverse transforma- 
tion--inverse Laplace L -1 or derivative I l. Omitting the rescaling (~o), 
one generation of transformation can be expressed as 

1 - 1 2 I L  1 2 L  (36) 

The exponents 7_+ will not be changed through the transformation I 1 2 I. 
Therefore we simplify this transformation and turn it into a simple square 
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operation 2. The resulting transformation now simply consists in square 
operations in real space and Laplace space, alternatively. We now note that 
the inverse Laplace transform can be identified with the Laplace transform 
itself, since we are only interested in a very crude characterization of the 
fixed point functions (namely the two exponents of the power law, which 
are the arguments of the exponential at plus or minus infinity). These two 
simplifications lead to the following transformation when going from one 
generation to the next: 

2 L 2 L (37) 

Under the assumption that the simplification of Eq. (36) into Eq. (37) 
does not affect the characteristic features of the fixed points, we are able to 
compute the exponent v. Indeed, we note that after the 2 L transformation, 
the resulting function will share the same properties as the fixed point itself, 
or 2 Lq~(x)= ~0(x), where the " = "  sign should be taken here with a weak 
sense, i.e., that the two asymptotic behaviors of the functions close to + oo 
are the same. 

To conclude, we need to know the behavior of 2Lop(x) close to 
infinity, knowing that of ~0(x). Using again the steepest descent method, it 
is straightforward to get the following asymptotic behavior: 

2 Lq0(x) ~ e x p ( -  M ~+) (38) 

with K+ and ~c_, respectively, for s close to +oo and - o o .  These 
exponents are related to ~ + through 

~c+-  ?v  (39) 
?-v- --1 

The identification 2 L@(x)= ~p(x) leads to K+ = 7+- Using the additional 
relation ? =27+ [Eq. (33)], we find 

7+ 
7+ 2(7+ - 1) 

and thus 7 =3.  

(40) 

This mapping allows us to determine the asymptotic behaviors of q~, 
as well as the scaling properties of the first and second moments of the 
minimal path problem, since we established that 7 + = v and thus v = 3/2. 
Let us underline that this result is only valid if our simplification does not 
change the nature of the fixed point. 

Finally, this last proposal justifies the upper limit of/~ + = 6 leading to 
stable laws with a power-law tail at - o o  as claimed previously [Eq. (31)]. 
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It is remarkable to note that the value v = 3/2 that we suggest for the 
hierarchical lattice is identical to the result of two-dimensional Euclidian 
lattices. (4) This result is surprising since generally the results obtained on 
hierarchical structures can only be qualitatively compared to those relative 
to Euclidian ones. We will see, for instance, that for the limit case of 
percolation, the correlation length exponents--which do exist in both 
cases--are nevertheless different (v = 1.635 and v = 4/3, respectively, for the 
hierarchical and the two-dimensional Euclidian lattices). It seems that the 
minimal path problem is less sensitive to the topology of the network than 
percolation. 

6. THE L IMIT  CASE OF PERCOLATION 

We argued in the introduction that by varying the parameter a in the 
norm of paths, one could go continuously from a minimal path problem to 
a percolation one. However, it is possible to obtain the continuous change 
while keeping the same norm, say with a = 1 in Eq. (3). This is achieved by 
performing the following change of variable: y = x a in Eq. (3). The corre- 
sponding distribution of y, h(y)dy, is related to that of x through 
h ( y ) =  (1/a)f(y  l/a) y(~/a) ~. The percolation case is obtained in the limit 
a ~ +oo. As claimed previously, we see that in this case h(y) approaches 
l/y, which is a ill-defined limit, since 1/y is not integrable to infinity. 
However, we may consider a finite a and let it go to infinite, or alter- 
natively, consider a 1/y distribution for y in an interval, say [-1, A], and let 
A go to infinity. We are interested in the properties of infinite-size systems. 
In this particular case, care has to be taken with the ordering of the two 
limits L ~ oo and A ~ oo. Taking first the limit of an infinite-size system 
will lead to the small-disorder case. 

The easiest way to study this limit is, however, to use the norm that 
corresponds to percolation, i.e., II-..IJ~. We can perform an analysis 
similar--although simpler- to the one done previously in the minimal path 
problem. The series transformation now consists in taking the maximum of 
two numbers, y = max(x~, x2). The distribution of y is related to that of x 
by 

~b = 5P(f)  

(41) f" ~b(y) = 2f(x) f ( x )  dx 
- - o 0  

The ~ transformation remains identical to Eq. (12). The ~ should no 
longer be considered, since no rescaling is needed. Working with the 
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integral distribution F(x) = ~ ~ f i x ' )  dx' simplifies the computation, since 
the N5 p transformation gives 

~SeF(x) = 1 - [1 -F (x )212  = [ 2 -  F(x) 2] F(x) 2 (42) 

We find very simply the percolation threshold Pc of the hierarchical lattice 
using Eq. (7) and the transformation (42): 

p ~ = ( 2 - p 2 )  p 2 (43) 

or p,, = (x/5 - 1 )/2 ~ 0.618. The shape of the asymptotic distribution q)(x) 
can be obtained as previously by writing ~o(x)= exp[-g(x)] and using twice 
the result expressed in Eqs. (25) and (26). After one generation, the 
distribution ~(x) is simply 

~(x)=2exp[2g(x)]  (44) 

For large arguments, the behavior of g(x) is a power law: g ( x ) ~  txlL 
Equation (44) gives the relation between y and the rescaling factor a of 
Eq. (19), 

o r  

2 ]xL~= lax[  "t (45) 

log(2) 
v (46) 

log(a) 

where the v exponent is the percolation correlation length exponent (21) 
and (22), which is different from the previously discussed v relative to the 
minimal path problem. The value of v for percolation can be computed 
from the evolution of F(x) = p for p close to but different from the percola- 
tion threshold Pc. In this case, after one generation, the rescaled p, written 
p', is given by an equation similar to Eq. (43): 

p ' =  1 -  ( 1 - p 2 ) 2  (47) 

For p = Pc + e, and e ~ 1, to first order in e, we can write 

p ' - -pc=  op' e = 2 e  (48) 
OPpc 

where 2 = 4 p ~ - - w e  have used Eq. (43) to simplify the expression of 2. 
Using Eq. (20) with b = Pc, we identify ~ = 2; thus, 

log(2) 
v = ?  log(4p2) (49) 
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Numerically, v ~  1.635. Let us note that in this case, the value of the 
correlation length exponent v is different from that of Euclidian lattice of 
the same dimension two--where v =4/3.  (1~ 

7. N U M E R I C A L  RESULTS 

We have carried out numerical simulations of the minimal path 
problem searching for the invariant distribution under rescaling. We 
discretized the unknown function ~0(x) and iterated the transformations 
L ~ S e  until the resulting function was invariant within numerical accuracy. 
Figure 2 shows a semilog plot of the function q~ starting from a uniform 
distribution of local weight between zero and one. As expected, the com- 
puted (0 function was independent of the initial distribution, provided it 
converges to zero faster than - x  -u+. 

Figure 3 shows that q)(x) indeed behaves as e x p ( -  Jxl ~-+) at ___oe. 
From the graph, we can measure the best slopes of linear regression of 
log{- log[~0(x) ]}  versus log [x]. We found 7 ~ 1.45 and ~+ ~2.6. Both 
estimates are a little smaller than the expected result 3/2 and 3. However, 
from the curvature of these plots, we can deduce that the measured 
exponents are certainly lower bounds of the asymptotic values, and thus 
they are consistent with our expectation within error bars. We also note 
that the curvature for ~ + is much stronger than that for 7 - .  

0 

- 5 0 '  

-100 

-150 . . . .  , . . . . . . . . .  , . . . .  

-30  -20 -10  0 10 

x 

Fig. 2. Semilog plot of the asymptotically stable distribution, log[q~(x)], versus x for a 
small-disorder case. The mean has been fixed to zero and the second moment to one. 
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Log-log plot of Fig. 2, log{ -log[~0(x)] }, versus log [xl, relative to negative x(. ) 
and positive x( + ). The lines drawn on the graph are best fits. 

We also measured the second cumulant of the distribution and we 
found that it was rescaled from one generation to the next by a constant 
amount,  a ~  1.62, which leads to a direct estimate of v=log(2)/log(a) 

1.43. Once again, v appears to be slightly underestimated. Direct Monte 
Carlo estimates of v also lead to estimates of the order of 1.4. Such a value, 
v = 1.425, has also been obtained numerically by Derrida and Griffiths (s) 
and Halpin-Healy. (9) We have no argument to explain or to justify a 
systematic underestimate of v numerically. 

We tested the stability of power laws close to - o e .  In order to do 
so, we simply performed Monte  Carlo simulations with a distribution 
f o ( X ) = # ( - x )  -1-~ for x <  - 1 ,  with different values of #. Let us mention 
a technical detail: The distribution of this mean value is such that the 
measured mean is expected to depend on the number  of samples on which 
the data have been generated. In order to avoid this spurious statistical 
effect, we estimated the arithmetic mean on ten realizations of a given 
system size, and then we took the harmonic mean over different sets of ten 

realizations.  The same holds for our estimates of the variance a. The 
number of realizations in the same set is kept constant (equal to ten) for 
all system sizes. However, the number  of these sets decreases as the system 
size increases. We considered one set a generation ten, four sets at genera- 
tion nine, sixteen sets at generation eight, etc. 
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Figure 4 shows the log-log plot of the mean value of ~(L) as a func- 
tion of the lattice size for # = 1, 2, and 4. The prediction of Section 4 is that 
for # less than 2, ~(L) will scale as the lattice size to the power 2 / # -  1, 
whereas for # larger than 2, ~(L) should stay constant. For  /z= 1, we 
obtain a power law with an exponent measured to be 1.03, consistent with 
the expectation 1. For  /~ =/~+ + = 2, the curve displays a clear downward 
curvature, indicating an exponent smaller than the tangent slope of the 
graph at the larger L considered, i.e., smaller than 0.14. This is again con- 
sistent with the expected result 0. For  # = 4 the graph indicates a tangent 
exponent of the order of 0.03 for large system sizes, again in agreement 
with 0. 

We report the estimates of the deviation a ( L )  as a function of the 
lattice size in Fig. 5, for # = 1, 2, and 4. We expect a power-law behavior 
with an exponent 2 / # - I ,  or, respectively, 1, 0, and -0 .5 .  Omitting the 
largest system size because of statistical uncertainty, and the two smaller to 
avoid size effects, we measure, respectively, 1.04, 0.03, and -0 .49.  The 
agreement is quite satisfactory. 

Finally, we have studied numerically the case of percolation as 
explained above so as to obtain the invariant distribution ~0(x). We show 
in Fig. 6 the resulting function plotted as in Fig. 3. We expect to obtain for 
large arguments x (either positive or negative) a power-law behavior with 
an exponent v ,,~ 1.635 [Eq. (49)]. We see a slightly different behavior for 

3 0  

2.0 

1.0 '  

0,0 . . . .  , . . . .  , . . . .  i . . . .  , . . . .  , . . . .  ~ . . . .  
0.0 0,5 1.0 1.5 2,0 2.5 3.0 3.5 

+ p.=l 

�9 p .=2  

o [1=4 

log~)  

F i g .  4 .  L o g  l o g  p l o t  o f  t h e  m e a n  v a l u e  o f  ~ ( L )  a s  a f u n c t i o n  o f  t h e  l a t t i c e  s i z e  L w i t h  

distributions of local weights such that fo(x)= # ( - x )  - u -  ~ for x < -1. Three values of p are 
shown on the graph: # = t (+); # = 2(- ); and # = 4(�9 ). 
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Fig. 5. Log-log plot of the deviation of ~(L), a(L), as a function of the lattice size L with 
distributions of local weights such that fo(x)= ~ ( - x ) - " - 1  for x < - 1 .  Three values of # are 
shown on the graph: p = 1 (+  ); p = 2( .  ); and p = 4 ( 0  ). The straight lines are best fits. 
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Fig. 6. Same as Fig. 3, for the percolation case. Results are for positive values of x ( +  ) and 
negative ones ( �9 ). The two curves are expected to approach a straight line of slope Y in both 
cases. The lines drawn on the graph are best fits. 
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positive and negative values. The measured slopes are equal to 1.71 and 
1.61 for positive and negative x, respectively. The estimate of the rescaling 
parameter a from one generation to the next is given by a direct integration 
of the function provided the estimate v = 1.644. The differences between the 
theoretical predictions and the numerical estimates lie within the error 
bars. 

8. B R E A K D O W N  OF UNIVERSALITY  FOR M A X I M A L  PATHS 

After most of this work was completed, we became aware of a recent 
numerical study by Zhang, t14/who investigated the role of a power-law tail 
in the distributions of local weights (for positive values) for maximal 
directed paths in a two-dimensional medium. This is simply equivalent to 
studying power-law tails for negative weights for minimal paths as we have 
done previously (Section 4.4). Zhang reported that the values of the critical 
exponents governing the scaling properties of the path were very sensitive 
to the value of the power-law exponent #. In this reference, two exponents 
were studied, X and z, which can be related to our v through 

X = - -  

Z z  

2 ( v -  1) 

2 v -  1 

2v 

2 v -  1 

(so) 

The range of values investigated in this reference was 2 ~< # ~< 7. The 
exponent X was found to tend toward 1 as # approached 2, and to decrease 
for larger #. 

This trend is similar to our finding for the hierarchical lattice, where 

4 
Z = - -  (51) 

# + 2  

for 2 = # + ~< # ~< # + + = 6 and X = 1/2 for # i> 6. A quantitative agreement 
with the numerical results of ref. 12 is found for # smaller than 4, but rather 
large deviations are found for # larger than 5. In particular, the usual set 
of exponents is not recovered for # = 6, nor even # = 7. 

This result by Zhang, termed "nonuniversality," has received a con- 
siderable attention, and several studies by different groups deal with this 
problem. In particular, a very accurate numerical analysis of this problem 
was performed by Amar and Family (15) in a two-dimensional Euclidian 
lattice. Their numerical estimates of the two exponents X (called cr in this 
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reference) and z are in very close agreement with our finding on the 
hierarchical lattice. 

Zhang (t6~ and Krug 117) independently proposed a Flory approach to 
the problem which gives a different prediction, )~=3/(#+ 1), and thus 
#+ = 5. This relation seems to be ruled out by the numerical results of 
Amar and Family. (~5) 

It is also important to note that the different stable behaviors observed 
for the minimal path problem have no consequence on the universality of 
the Eden model, since it can be shown (13) that this model can be mapped 
exactly onto the minimal path one, with only positive weights. Moreover, 
the distribution of these weights, which can be computed exactly, is an 
exponential distribution, thus with no power-law tail at infinity. 

9. C O N C L U S I O N  

We have presented a complete scaling picture of the minimal path 
problem on the hierarchical lattice for all distributions of random weights: 
we have identified the different limit behaviors [power-law tail at minus 
infinity (Section 4.4) and small-disorder case (Section 4.5)], their basin of 
attraction (dictated by the power-law behavior close to minus infinity of 
the initial distribution), and the asymptotic shape of the distribution of 
minimal weight for the small-disorder case, and for the extreme-disorder 
case (percolation). We have also presented an argument--which relies on 
the assumption that a simplification of the renormalization does not affect 
the large-argument behavior of the distribution--which gives the result 
v = 3/2 for the hierarchical lattice. The results of numerical simulations sup- 
port the presented analysis, although the value of v seems to be systemati- 
cally smaller than the predicted value of 3/2. 

In the light of the striking agreement that we observe between the 
exact results on the hierarchical lattice and the observed numerical results 
on Euclidian lattices concerning the stability of power-law tails close to 
minus infinity, it seems that the simple topology of the first case does not 
affect the overall behavior. Deeper understanding of this puzzling observa- 
tion would be desirable. 
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